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A b s t r a c t. Root-soil relationships are pivotal to under­

standing crop growth and function in a changing environment. 
Plant root systems are difficult to measure and remain understudied 
relative to above ground responses. High variation among field 
samples often leads to non-significance when standard statistics 
are employed. The adaptive neuro-fuzzy inference system 
(ANFIS) has been applied in many agricultural and environmental 
fields and may represent a viable means for dealing with com­

plexities of root distribution in soil. We applied this method to 
vertical and horizontal root distribution data collected from a po­

tato (Solanum tuberosum L.) cropping system grown under 
ambient and elevated levels of atmospheric CO2. The lack of a CO2 

effect on root length or dry mass densities was most likely due to 
the low growing season temperature limiting root growth in this 
subarctic system. At all CO2 levels, potato roots were concentrated 
near row centre, particularly in the upper soil profile. Simulations 
indicated that ANFIS gave plausible results, indicating it offers 
a viable alternative to more traditional statistical techniques for 
evaluation�of�complex�root�distribution�patterns. 

K�e�y�w�o�r�d�s:�fuzzy�logic,�roots,�potato 

INTRODUCTION 

Root-soil relationships are pivotal in understanding 
crop growth and function, especially given the predicted 
impacts of global change (Rogers et al., 1994). The well-

documented rise in atmospheric CO2 concentration (Keeling 
and Whorf, 2001) increases aboveground plant growth 
(Kimball, 1983). Although less studied, plants often show 
increased rooting under elevated CO2 (Rogers et al., 1994, 
1996)�which�is�important�for�acquisition�of�soil�resources. 

Plant root systems are understudied relative to above-

ground responses because they are notoriously difficult to 
measure, especially in the field. Removing roots from soil 
and debris is tedious and time consuming, which limits 

sample numbers. High variation among field samples often 
leads to non-significance when standard statistics are 
employed. Accurate descriptions of complex root distribu­

tion patterns require simulation of a non-linear system with 
poorly quantified uncertainties and the adaptive neuro­

fuzzy system may offer a viable alternative. A fuzzy inferen­

ce system (FIS) and its adaptive version (adaptive neuro­

fuzzy inference system or ANFIS) employ fuzzy if-then 
rules to model the qualitative aspects of knowledge and 
reasoning processes without precise quantitative analyses 
(Jang, 1993). Compared to traditional regression approa­

ches, ANFIS does not require a priori regression models 
which can be difficult to justify (Schaap et al., 1998). Recent 
examples of ANFIS applications in agricultural research 
include soil erosion (Akbarzadeh et al., 2009) and yield 
modelling�(Arkhipov et�al.,�2008). 

This study aims to evaluate ANFIS application for ex­

ploring complex root distribution patterns under field condi­

tions. 

MATERIALS�AND�METHODS 

The foundation of ANFIS is the data driven fuzzy mo­

delling approach. This allows model extraction from input-

output data represented as FIS (Zadeh, 1973). This is a rule 
based system with three components: membership functions 
of input-output variables, fuzzy rules, and output characte­

ristics,�membership�functions,�and�system�results. 
Fuzzy inference systems are one of the most famous 

applications of fuzzy logic and fuzzy sets theory (Zadeh, 
1973). The strength of FIS is the ability to handle linguistic 
concepts and perform non-linear mappings between in­

puts and outputs (Serge, 2001). ANFIS is a combination of 
a Sugeno-type FIS (Sugeno, 1985) and artificial neural 
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T�a�b�l�e��1. Main�characteristics�of�the�designed�fuzzy�inference�system 

Number 

Parameter Input 
data 

Input 
variables 

Output 
variables 

Membership�functions Epochs 

Training 
error 

Root�length�density�(km�m-3) 36 3 1 32 32 32 100 0.3�10-4 

Root�mass�density�(kg�m-3) 36 3 1 28 28 28 100 0.115�10-6 

networks (ANN) (Jang, 1993) which are universal estima­

tors of multivariate non-linear mappings capable of learning 
and generalising from training data. To determine member­

ship function of input-output variables, two methods 
(backward propagation and hybrid-learning algorithms) are 
used for ANFIS learning and rule construction. Model 
performance is examined using the root mean square error 
(RMSE): 

2 
1 n 

��Z � � ,RMSE� S Zo 
n k�1 

where: Zs is the measured value, Zo is the predicted value, 
and n is the sample number. The RMSE evaluates the agree-

ment�between�measured�and�predicted�values. 
To generate FIS using ANFIS, we applied MATLAB’s 

Fuzzy Logic Toolbox (Mathworks, 2004) which enables 
creation and editing of FIS, manually or automatically driven 
by the data. The test data utilized was from a potato study con­

ducted in Fairbanks, AK, USA on a Tanana silt loam using 
open top field chambers at three atmospheric CO2 levels 

-1
(369, 543, and 707 ìmol mol CO2) as described in detail by 
Conn and Cochran (2006). Soil cores (60 cm length; 38 mm 
diameter) were taken (0, 19, and 38 cm from row centre), 
processed into 15 cm increments, and root length and dry 
mass�(55°C)�were�determined�(Prior et�al.,�2005). 

RESULTS�AND�DISCUSSION 

Using ANFIS, two three-input FISs were built to define 
the contiguous relations between root characteristics and 
atmospheric CO2 levels (Table 1). The training process and 
the step-size variation for the input model at each iteration 
are shown in Fig. 1. Usually the error curve goes downhill 
until the end of training. After training completion, the 
evaluation phase occurs. Performance of the ANFIS model 
is�compared�in�two�data�sets:�training�and�testing. 

Figure 2 shows the correlation between observed and 
forecast values. Main characteristics of the testing process 
are shown in Table 2. As seen in the figures, the ANFIS suc­

cessfully learned the relationship between the input and out­

put data. The results indicate the generalization properties of 
the ANFIS model during training, verification, and testing 
are comparable (Fig. 2). Graphical results of computations 
are presented in Figs 3 and 4 where treatments 1-3 (CO2 
concentration) are defined as 369, 543, and 707 ìmol mol

-1 

CO2, respectively. The absence of sharp ascent or descent 
indicates that the training data were distributed across the 
input space of the model in a somewhat uniform manner and 
that the model captured the underlying process dynamics 
which were in general agreement with data collected using 
traditional�approaches�(Prior et�al.,�2005). 

Fig.�1. Error�curve�during�the�learning�process ie root�mass�modelling. 
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Fig. 3. Adaptive neuro-fuzzy inference system surface after 
training describing the relation between: a – root length density 

Fig. 2. Correlation between observed values (dots) and forecast va­ (RLD), depth, and CO2 treatments, b – RLD, distance from crop 
lues (stars) during testing of the: a – root length density, and b – root -1 row centre, and CO2 treatments; treatment 1 = 369 !mol mol CO2; 
mass�density�models. -1 -1 treatment 2 = 543 ìmol mol CO2; treatment 3 = 707 ìmol mol CO2. 

T�a�b�l�e��2. Main�characteristics�of�the�testing�process 

Parameter 
Number 

of�test�data�pairs 
Average 

testing�error 

Root�length�density�(km�m-3) 12 7.7513 

Root�mass�density�(kg�m-3) 12 0.0273 

Using the ANFIS approach, little effect of CO2 concen­

tration was found for either root length or root mass density 
regardless of position or depth increment (Figs 3 and 4). This 
is in agreement with data collected using root cores (Prior et 
al., 2005). In this same Alaska potato study, Conn and 
Cochran (2006) found an increase in allocation to tubers 
under elevated CO2 with a concomitant reduction in alloca­

tion to aboveground biomass; this resulted in a large increa­

se in root:shoot ratio (R:S) under elevated CO2. They sug­

gested that, since tubers represent a stronger sink for carbon, 
this reduced carbon allocation to aboveground plant organs. 
A review of 264 crop species by Rogers et al. (1996) found 
that the highest and most consistent R:S response to elevated 
CO2 occurred in tuber crops. Idso et al. (1988) found R:S 
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Fig. 4. Adaptive neuro-fuzzy inference system surface after 
increased ~36% in tuber crops exposed to elevated CO2, training describing the relation between: a – root mass density 
while R:S of non-tuber crops showed no response. In addi­ (RMD), depth, and treatments, b – RMD, distance from crop row 
tion to these allocation shifts, the low growing season centre�and�CO2 treatments. Explanations as in Fig. 3. 
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temperature in the subarctic study may have contributed to 
the limited potato response to CO2 enrichment; it is likely 
that the combination of these factors also limited fine root 
response�to�elevated�CO2. 

Despite the lack of a CO2 response, more of the potato 
root system grew closer to the row centre (Prior et al., 2005). 
This response pattern was also observed in the ANFIS 
analysis (Figs 3b and 4b). In addition, while it is common for 
more roots to occur in the upper soil profile (Rogers et al., 
1994), the low soil temperature at the lowest depth incre­

ments may have limited root growth in this subarctic envi­

ronment (Prior et al., 2005). Again, this pattern was re­

flected�using�the�ANFIS�approach�(Figs�3a�and�4a). 
Characterizing root distribution in complex plant/soil 

systems is important for developing decision support tools 
to solve farm problems in a changing environment. In this 
work, the unique potential of ANFIS to identify these re­

lationships was in agreement with traditional methods of 
analysing root data. Adaptive neuro-fuzzy inference systems 
also easily provide excellent visual representations of the 
rooting�patterns�in�a�complex�soil�environment. 

CONCLUSIONS 

1. Elevated CO2 had little effect on potato rooting 
patterns�in�subarctic�Alaska. 

2. Simulation shows that the ANFIS technique gives com­

parable results, indicating that the fuzzy method offers a via­

ble�alternative�to�more�traditional�statistical�techniques. 
3. A reasonable relative error warrants further use of 

ANFIS with more extensive datasets to improve characteri­

zation of complex rooting patterns in heterogeneous soil 
environments. 
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